CS 4100: Introduction to Al

Wayne Snyder
Northeastern University

Lecture 6: Conclusion to Theorem Proving in FOL; Prolog

OPENLIBRA Daniel Diaz

Resolution Theorem Proving in FOL

(Demonstration of FOL Resolution system)

N

SO S

Prolog: PROgramming in Logic

Prolog is a programming language based on resolution theorem proving in
first-order logic, first developed around 1972 by Alain Colmerauer and
Robert Kowalski.

Prolog was widely use in Al during the 1980s, including major research

efforts:
ion Computer Systfems@

/7

Colmerauer

Currently it is used in academia and in several current systems, including
IBM's Watson, as part of the NLP subsystem. The developers have said
that . '

"We required a language in which we could conveniently express
pattern matching rules over the parse trees and other annotations
(such as named entity recognition results), and a technology that
could execute these rules very efficiently. We found that Prolog was
the ideal choice for the language due to its simplicity and
expressiveness."

Prolog: PROgramming in Logic

Prolog is a programming language based on resolution theorem proving in
first-order logic, first developed around 1972 by Alain Colmerauer and
Robert Kowalski.

Prolog was widely use in Al during the 1980s, including major research
efforts:

Colmerauer

* European Espirit
e ICOT Fifth Generation Computer Systyems Initiative

Currently it is used in academia and in several current systems, including
IBM's Watson, as part of the NLP subsystem. The developers have said:

Kowalski

"We required a language in which we could conveniently express
pattern matching rules over the parse trees and other annotations
(such as named entity recognition results), and a technology that
could execute these rules very efficiently. We found that Prolog was
the ideal choice for the language due to its simplicity and
expressiveness."

Prolog: How to program in FOL?

What are the main differences between a search program like our FOL prover and a
programming language? . T

F\% .;‘;\)F% C”"US(’{ co/uS(?(,u::c.\\ Z (l 2—3

—

¢?

% < =W

Prolog: How to program in FOL?

Non-determinism (hard to predict execution steps) and inefficiency are mitigated by
using a restricted form of formula (Horn clauses) and a restricted form of resolution

(SLD resolution). ¢

(_\—

Recall: Horn clauses have at most a single positive literal:

T — {Mﬁi (X) \)L \MSHAM(J()%
W—rg (Female(isabelle)

Female(karen)
e ——

Child(isabelle, anne, oscar)
Child(oscar, karen, franz)

r’ VxVyVz. Offspring(x,y) Vv ~Child(x,y, z)
—_— — \

W{\lf/s VxVyVz. Offspring(x,z)V —Child(x,y,z)

\
VxVy. Parent(y, x) V — Offspring(x, y) A [\
{

VxVy. Mother(x,y) V ~Female(x) V ~Parent(x,y

VxVy. Grandmother(z,x)V " Mother(z,y) V = Offspring(x, y)
ﬁ/-\

o

G—O M/ L‘v’x. =Grandmother(karen, x)

> .7
¢S 2

,'4./¢ (.

Prolog: Horn Clauses AT

OGO
It is MUCH clearer to write these as implications (when there are negative literals), and leavedt
the quantifiers:

Female(isabelle) Female(isabelle)

Female(karen) Female(karen)

Child(isabelle, anne, oscar) Child(isabelle, anne, oscar)

Child(oscar, karen, franz) Child(oscar, karen, franz)

VxVyVz. Offspring(x,y) Vv ~Child(x,y, z) Offspring(x, y} < Child(x, y, z)
VxVyVz. Offspring(x, z) v ~Child(x, y, z) \ Offspring(x, z} < Child(x, y, z)
Offspring(x, y)

Female(x) A Parent(x, y)

VxVy. Parent(y, x) V = Offspring(x, y) Parent(y, x)

VxVy. Mother(x,y) V ~Female(x) V = Parent(x, y) Mother(x, y)

o
VxVy. Grandmother(z,x) V- Mother(z,y) V = Offspring(x, y) \ Grandmother(z, x))< Mother(z,y) A Offspring(x, y)
~ I ———

Vx. =Grandmother(karen, x) !f—'Grandmother(karen, X) ?

Note that what we have done is to move the positive literal to the left of < and negatives to the right, which
makes the logical connection much clearer: "X is the mother of Y if X is female and X is a parent of Y."

Analogously, we can express the query ("set of support") as an implication with no "head":

(" <« Grandmother(karen, x)

Prolog: Horn Clauses

a

—

[4

Finally, in order to write these as plain text, we use :- for< and use a period to show the end of

the statement.

Female(isabelle)

Female(karen)

Child(isabelle, anne, oscar)

Child(oscar, karen, franz)

Offspring(x, y) < Child(x, y, z)

Offspring(x, z) < Child(x, y, z)

Parent(y, x) < Offspring(x,y)

Mother(x, y) < Female(x) A Parent(x, y)
Grandmother(z,x) < Mother(z,y) A Offspring(x,y)

=Grandmother(karen, x)

'.?N_

Female(isabelle).

Female(karen).

Child(isabelle, anne, oscar)
Child(oscar, karen, franz). [\UL& M&
Offspring(x, y) - Child(x, y, z). ONPRR
Offspring(x, z) :- Child(x, y,). ((= né
Parent(y, x) :- Offspring(x, y).

Mother(x,y) :- F emale(x), Parent(x, y).

Grandmother(z X) :- Mother(z ¥), Offspring(x, y).

?Grandmother(karen X).] &O ER%—’
SOAL cpycke

Sahsas) e O mroon) piecs)

Skl (XA

Prolog: SLD Resolution
SLD = "Selection Rule Linear Derivation": ﬁ

Linear Resolution means that there is only ONE clause (the "Goal Clause") that We\resolve
against, and

GoAl CCALSA
a Selection Rule tells us which literal in the goal clause to resolve on. =G A
- — tmeh LERT MoaT L ITEML A
PROLOG is a particular implementation of SLD Rssolutlon with the following
features: ? Quece.
QoL CeptsE C l
{ Vst
* We use a stack instead of a queue (so we are doing depth-first search); 5 =
= it fof
* We start (as usual) by putting the goal clause on the stack; Female(isabelle).

Female(karen).
« We treat the program as a list of clauses, nys try Child(isabelle, anne, oscar)
rules/facts in the order they occur in the pregse : oA Child(oscar, karen, franz).
| Offspring(x, y) :- Child(x, y, z).
C g D Offspring(x, z) - Child(x, y,).

. — Parent(y, x) :- Offspring(x, y).
There are other "bells and whistles" but let's examine aremt(y, x) - Offspring(x.3)
Moth ,y) - F I , P , V).
what we have so far A % C. other(x.) = Femate(x), Pareni(x.)
Grandmother(z, x) :- Mother(z, y), Offspring(x, y).

? A v :- Grandmother(karen, x).
' -

3'”@ \ , Y [5p hecs

S B A -9 C)= VY
LA Q%,»D o !

Prolog: Depth-First Search Tree = 7|} remec e

“2_ Female(karen).

Child(isabelle, anne, oscar)
TN s o e } o A

(/'q_ Child(oscar, karen, franz).

? QMEMT (WZ{OSCAL f_%q Offspring(x, y) :- Child(x, y, z).
(' — é Offspring(x, z) :- Child(x, y, 2). XA

Y\ FR’ Z Parent(yi)_:- Offspring(x, P

2 Mother(x, y) :- Female(x), Parent(x, y).

>< = 0%& 9 Grandmother(z, x) :- Mother(z, y), Offspring(x, y).
e . -

)/:Ww' [—

) _ c(,(-:u»O(GsahR RRANE)

-« / >~Cemfv(os*c,m }/ A 4-
A \ ‘ ~——of~-..

4ﬂ = RS
§ el F%f*";" Y

$RS \
T \J ‘ g 0<cs§§

Prolog: Depth-First Search Tree

A--C

<

(A0 |
i@r——% o

Female(isabelle).

Female(karen).

Child(isabelle, anne, oscar)

Child(oscar, karen, franz).

Offspring(x, y) :- Child(x, y, z).

Offspring(x, z) :- Child(x, y, z).

Parent(y, x) :- Offspring(x, y).

Mother(x, y) :- Female(x), Parent(x, y).
Grandmother(z, x) :- Mother(z, y), Offspring(x, y).

:- Grandmother(karen, x).

OR RBEAAAL gf
PWhlrcanc
e §

> Adl AUl
‘ l J O & &00\’

v @223
&MKWMK

Yo oasT ot
(L A,

Prolog: Depth-First Search Tree
Ve 1 Fomalelisabello) -
. Female(isabelle).
9{_1_ ; Female()
(3. Chz:ld(isabelle, anne, oscar) >

. 4. Child(oscar*karemn,Jxanz).
7/‘MOTW(W = / X 2.0 srin(s }’) - Chlld(xs Y, ZD
< 6. Offspring : ild(x, y, z).

7. Parent(y x) :- Offspring(x, y).

8. Mother(x, y) :- Female(x), Parent(x', yS.
D — FEWW(/E (M‘REMB FA\(A&MLT(V{_NEV\(()(> 9. G ndmogl?rﬂ, X) :- Mother(z, y), Offspring(x, y).

Prolog: Bells and Whistles....

A variety of other features make Prolog a realistic programming language:

Arithmetic and Boolean operations can be included in programs:

1 max(X,Y,X) :- XY. X+ |

2 max(X,¥.,¥Y) = X

Input and output primitives:

?= child_fact(X.Y.Z%), @ writef" 1s a child of *); % T}FIL/
write(Y) , write(’ and. *) ,wette(Z) , write(’.”’)., nl. Farl.
Podababiaa - S et okl B \\} ([/

Lists as a primary data structure:

list([A,2,2,B,3,4,5]). TRl

con-S . .

CoAS PROLOG displays the dialog
@ D ol
onS 3 —

/ \ z—Lz’ 2. B 3. ¢ 5]
r— st (A 0x1] |

Can) -
s\

g AT

Prolog: Lis ing SE@M[%() [M >

1 append([],L, cL)
2 append([X‘[Ll] L2 [X|L3]) T - append(Ll L2 L3)

N___/_\
?- append([1, 2], [3, 41, @)
Z. X=
L= (2]

X
e

(im0 05) S

/ \ Le = Z? L”?’ZZ/Z?(@]
L= = [3.48

L2 = Zanz

L
7~ NIeH0 (573 3 3)

s

